Lecture 7

Lecture 7
Convolutional Neural Networks (Convent / CNN)

Intro

Challenge

2-D Convolution

3-D Convolution

Convolution Layer

Connection to fully-connected network
Pooling Layer

A breakthrough result

Sequence Prediction and Markov Models

Sequential prediction & Language modeling
n-gram language model

Markov model

Learning Markov models: MLE

Learning Markov models: Another perspective
Higher-order Markov models

Generating text with a n-gram Language Model

Recurrent Neural Networks

The problem with fixed-window

Word embeddings / vectors

A fixed-window neural language model
RNN

Training an RNN language model
Summary

Convolutional Neural Networks (Convent / CNN)

Intro

Image classification: a core task in computer vision

(assume given set of discrete labels)
{dog, cat, truck, plane, ...

|

cat

W: How 5 thig Represended 2

The problem: semantic gap

The Problem: Semantic Gap TETE TS TS E LG

91 98 102 106 184 T3 5O 103 25 103 133 136 110 103
A5 00 185 126 195 67 6C 95 99 115 112 L6 100 W
B3 81 95 120 131 127 106 95 48 162 9% 9% 93 1M
91 61 t4 46 91 B0 e
$34 100 @5 55 55 @ 6
33 137 147 103 43 81 &
137 144 340 16 95 06
13) 148 337 438 128 117
127 129 131 347 133 127 126 3
135 104 100 123 150 140 1M1 3
9) W ST 10k 142 131 3
7 8 1 NN
6 0 W NN W
3 8% TS 8 89 1 &2
65 TL T ME 95 @
9 WO A 116
(184 148 112 20 82 120 124 3
W 157 120 91 06 114 132 11 s
120 133 361 139 190 189 318 127 134 118 &) 45 S3 68
112 96 117 130 144 120 113 104 107 102 53 &7 o1 72
[822 147 O 66 82 112 150 340 122 109 184 IS 20 107 312
[122 121 162 €0 82 5 53 117 145 189 185 102 58 ™ %2 1
(122 164 148 283 71 55 70 83 9) 103 110 136 142 61 €0

What the computer sees

8 An image is just a big grid of
G ‘ numbers between [0, 255]:
S 30 ¢ e.g. 800 x 600 x 3
| (3 channels RGB)

€22

Challenges: viewpoint variation, illumination, deformation, occlusion, background clutter, intraclass variation.
Unlike sorting a list of numbers, no obvious way to hard-code the algorithm for recognizing a cat, or other classes.

Attempts:

Find edges ‘] Find corners

Data-Driven Approach

e (ollect a dataset of images and labels
e Use machine learning to train a classifier
e Evaluate the classifier on new images

Challenge
How do we train a model that can do well despite all these variations?
The ingredients:

e A lot of data (so that these variations are observed).
e Huge models with the capacity to consume and learn from all this data (and the computational infrastructure to enable training)

What helps: Models with the right properties which makes the process easier (goes back to our discussion of choosing the function
class).

The problem with standard NN for image inputs

32 x 32 x 3image -> 3072 x 1

input

11

3072

Completely loses out on spatial structure.
Solution: Convolutional Neural Net (ConvNet/CNN)

A special case of fully connected neural nets.

activation
Wz
—)
10 x 3072
X 10
weights
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

Usually consist of convolution layers, ReLU layers, pooling layers, and regular fully connected layers.

Key idea: learning from low-level to high-level features.

f =

NN

INPUT CONVOLUTION + RELU

POOLING

CONVOLUTION + RELU POOLING

— CAR
— TRUCK
— VAN

E.] E.] — BICYCLE

FLATTEN FULLY

CONNECTED Sl

2-D Convolution

* operation is convolution

2-D Convolution
His opebier s comalubion 7

0[1]2
qwj 345(,*

\'“1“ 6|7]s

Y i

FEATURE LEARNING

CLASSIFICATION

0041 +32 +4.3

10 4+ 2.

0|1 19 51> L 4aecy

213 37143
“UYlhern"

Figure 14.5: Illustration of 2d cross correlation. Generated by conv2d_jaz.apynb. Adapted from Figure 6.2.1

of [Zha+20].

3-D Convolution

Theinputis 3 x 3 x 2

Input Kernel Input Kernel Output
11213
112
4 | 5|6 | *
=0 3|4
of1]2] 71819 56 | 72
* [— + =
415 = = 104|120
21|13 0|12
6|7 |8 011
3|14|5)| *
213
6|78

Add up the result for the two channels

Convolution Layer

Convolution Layer

32x32x3 image

4

32

N

w|

Filters always extend the full
depth of the input volume

-

ox5xa3 filter

(7

II Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32x32x3 image

y
——0

~

=\

PN

w|

5x5x3 filter w

1 number:

the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image

(i.e. 5*5*3 = 75-dimensional dot product + bias)

wlz +b

32x32x3 image activation maps

oxox3 filter
32

—0)

convolve (slide) over all

spatial locations /
28
pL

1

=\

N\

w|

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

activation maps

32

N\

28

Convolution Layer

28

x
N

(

c

LANAIN]

3 6
We stack these up to get a “new image” of size 28x28x6!

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with
activation functions

A A A

CONYV, CONYV, CONYV,
RelLU RelLU RelLU

eg.6 e.g. 10
5x5x3 5x5x6
32 filters 28 fiters [[%

w|
o |
-_—
o

Preview

Visualization of VGG-16 by Lane Mcintosh. VGG-16

[Zeiler and Fergus 2013] . from [si and zi

Low-level

features

Mid-level
features

| High-level | L'”eag’l’
features separg. b
classifier

4 p ‘

. i < P =) Z ;
VGG-16 Convi_1 VGG-16 Conv3_2
Calculation:
7
7x7 input (spatially)
assume 3x3 filter
- => 5x5 output
7

7x7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

2014].

.

7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7 doesn’t fit!
cannot apply 3x3 filter on
/X7 input with stride 3.

Output size:
(N - F) / stride + 1

eg.N=7F=3:

stride 1=>(7-3)/1+1=5
stride2=>(7-3)/2+1=3
stride 3=>(7-3)/3+1=2.33:\

In practice: Common to zero pad the border.

0|0(0f0|0|O

e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?
2 7X7 output!

in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F =3 => zero pad with 1

F =5 => zero pad with 2

F =7 =>zero pad with 3

N+2P—-F

1
stride *

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size:
(32+2*2-5)/1+1 = 32 spatially, so
32x32x10

Number of parameters in this layer?
each filter has 5*5*3 + 1 = 76 params
=>76*10 =760

Input: a volume of size Wy x Hy x D,

Hyperparameters:

o K filters of size F' x F'
e Stride S
e Amount of zero padding P (For one side)

Output: a volume of size Wy X Hy X Dy where

W) +2P—F
= ——F+

Wy = 5 1
H, — H1+2P—F+1
S
Dy =K

#parameters: (F x F x D1 4+ 1) x K weights

Common setting: F =3,S=P=1

Exp: https://poloclub.github.io/cnn-explainer/

Connection to fully-connected network

A convolutional layer is a special case of a fully connected layer:
Filter = weights with sparse connection and parameter sharing.
Local Receptive Field Leads to Sparse Connectivity (affects less),

Sparse connectivity: being affected by less

(+1 for bias)

e ONONONO

due to small
convolution
kernel

Dense
connections

https://poloclub.github.io/cnn-explainer/

Parameter sharing

Convolution
shares the same
parameters
across all spatial
locations

Traditional
matrix
multiplication
does not share
any parameters

Oll050,
O ONO50
0;,0)050
OO
OXOROL0

Much fewer parameters: (Ex ignoring bias terms)

FClayer: (32 x 32 x 3) x (28 x 28) = 2.4M
Conv layer: 5x5x3=75

___— 32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

Pooling Layer

Makes the representations smaller and more manageable
Operates over each activation map independently.
Similar to a filter, except

e depthisalways 1
e different operations: average, L2-norm, max
® no parameters to be learned

Max pooling with 2 x 2 filter and stride 2 is very common.

-

Input Output
N 2

2 x 2 Max B °
314|5)

Pooling 71 a
6 7|8

Shrink the feature map.
Input: a volume of size W1 x Hy x D1
Hyperparameters:

o filters of size F' X F

28

e Stride S

Output: a volume of size Wy X Ho X Do where

Wy —F
Wy=——+1
2 g +

H, - F
Hy=—+1
2 g +

Dy =D,

#parameters: 0.

Input — [[Conv — ReLU| * N — Pool?| + M — [FC — ReLU| *x Q — FC
Common choices: N < 5,Q < 2, M is large. (# parameters here is really large)
How do we learn the filters/weights?

Essentially the same as fully connected NNs: apply SGD/backpropagation

A breakthrough result

AlexNet
204¢ J0ag \dense
13
A 13 dense dense)
1000
128 Max L_| L
Max 128 Max pooling 294 2048
pooling pooling

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624—64,896-64,896-43,264—
4096-4096-1000.

Sequence Prediction and Markov Models

Sequential prediction & Language modeling

Given observations 1, T2, -+, ;1 (input), what is x; (output).

Examples:

e text or speech data
e stock market data
e weather data

In this lecture, we will mostly focus on text data (language modelling).

Language modelling is the task of predicting what word comes next:

books

the students opened their /‘/ laptops
\\’ exams
minds

More formally, let X; (r.v. over the randomness in the sentence, context, etc.) be the random variable for the I-th word in the
sentence, and let x; be the value taken by the random variable. Then the goal is to compute

P(Xp1| Xy = @4y, X1 = 21)
A system that does this is known as language model.
We can also think of a Language Model as a system that assigns a probability to a piece of text.

For example, if we have some text x1, - - -, 7, then the probability of this text (according to the Language Model) is:

P(X1 :ml,---,XT:a:T) ZP(Xl Z.’Iil) X P(X2 :$2|X1 leil)
XX P(Xp=2zp|Xr 1 =271, -, X1 = 21)

T
= HP(Xt =Xy 1 = 21,0+, X1 = 21)
=1

You use Language Models every day!

oogle

(=

what is the |

what is the weather

what is the meaning of life
what is the dark web

what is the xfl

what is the doomsday clock
what is the weather today
what is the keto diet

what is the american dream
what is the speed of light
what is the bill of rights

Google Search I'm Feeling Lucky

n-gram language model
n-gram language model is a type of Markov model.
the students opened their ___

® Question: How to learn a Language Model?

® Answer (pre- Deep Learning): learn an n-gram Language Model

e Definition: An n-gram is a chunk of n consecutive words.
unigrams: “the”, “students”, “opened”, "their”
bigrams: “the students”, “students opened”, “opened their”
trigrams: “the students opened”, “students opened their”

four-grams: “the students opened their”

e |dea: Collect statistics about how frequent different n-grams are and use these to predict next word.

Markov model

A Markov model or Markov chain is a sequence of random variables with the Markov property: a sequence of random variables
X1,X9, -+, st

P(XtJrl‘Xl : t) = P(Xt+1|Xt)
i.e. the current state only depends on the most recent state (notation X7.; denotes the sequence X7, - - -, Xy). This is a bigram(2-
gram) model!
We will consider the following setting:

All X;'S take value from the same discrete set {1, -- -, .S} . S is the size of the dictionary of all possible words.

P(X;11 = §'| Xt = s) = as,¢, known as transition probability.

P(X, = s) = ms . ms is the initial probability.

({ms},{asis}) = (m, A) are parameters of the model. (A € R®*5 is the matrix where the entry corresponding to s, s’ is @ ¢/).

P(X1,---,Xr) = P(X1) - P(X2|X1) - P(X3|X2) - P(Xp|X1-1)

e Example 1 (Language model)
States [S] represent a dictionary of words,

Qjce,cream — P(X;y1 = cream | X; = ice)

is an example of the transition probability.

e Example 2 (Weather)
States [S] represent weather at each day

Asunny,rainy = £’ (X¢41 = rainy | X; = sunny)

A Markov model is nicely represented as a directed graph

st oy e (lang, (0. pod,
Swwg,l«m 1 paak -

-‘Tﬂa;hb TO ¢

T‘Suu\ﬂ(’ - Q,I.,

_l‘e ‘{’0‘.12 ,;3 e.aiha) b, s will ()Q {ﬁa«”% > Fo7y. fM.
Semey, 367, b

Learning Markov models: MLE

Now suppose we have observed n sequences of examples:

® Ti1, 5 T1T

[R

® Til,,TiT

® .-

° LTnly yTn,T
where

e for simplicity we assume each sequence has the same length T".
o lower case x; represents the value of the random variable X; ; .

From these observations how do we learn the model parameters (, A) ?
Same story, find the MLE. The log-likelihood of a sequence 1, -+, T is

lnP(XlzT - ml:T)

T
= Zln P(X; =z X141 =214-1) (always true)
t=1

T
= In P(X; = 2| X1 = 2t-1) (Markov property)
t=1
T T
=Inm, + Z Inay, ., (Inmy, means P(X; = x1) = 7y, Z Ina,, , 4, is the prob of transitioning from x,—1 — x)
=2 =2

T
= Z]I[ml =s|lnm, + Z(Z Iz; g = s,z = s’]) Inas s
s t=2

s,s’
This is just over one sequence, we apply it to sum all sequences.

So MLE is

arg max Z(#im’tial states with value s)Inms + Z(#transitions from stos')Inasy
U s

8,8’
If Y, #initial states with value s is large for some s, then s should be large for that s .
This is an optimization problem, and can be solved by hand (though we'll skip in class).
The solution is:

#initial states with value s
T =

#initial states

#transitions from sto s’

As,s'

B f#transitions from s to any state

Learning Markov models: Another perspective
Let's first look at the transition probabilities. By the Markov assumption,

P(Xi1 = 2| Xy = @4y, X1 = 21) = P(Xpy1 = @441 | Xy = 24)
Using the definition of conditional probability

P(Xii1 = @1, Xy = x4)

P(Xii1 = x| Xy = x4) = PX; = 27)
=Ty

We can estimate this using data

P(Xi11 = wpp1, Xy = 14) #times (x4, z111) appears

P(X; =) #times (z;) appears(and is not the last state)
We don't use the last state, since it won't transfer to any state
The initial state distribution follows similarly

P(X, =) ~ #times s is first state

#sequences
This is just like estimating bias of a coin / dice.

Exp:

Suppose we observed the following 2 sequences of length 5

* sunny, sunny, rainy, rainy, rainy
* rainy, sunny, sunny, sunny, rainy

Sunny occurs b, rainy occurs 3 (We don't use the last state, since it won't transfer to any state).
For example:

P(X iny| X) times (sunny, rainy) occurs
= rain = sunny) = —
tH it Y= Yimes (sunny) occurs(and not the last state)

o] o

P(X; = sunny) = times sunny is first state l

number of sequences 2

Higher-order Markov models

Is the Markov assumption reasonable? Not so in many cases, such as for language modeling.

Higher order Markov chains make it a bit more reasonable, e.g. the second-order Markov assumption
P(X1| X4, -+, X1) = P(X¢a1| Xy, Xi1)

i.e. the current word only depends on the last two words. This is a trigram model, since we need statistics of three words at a time to
learn. In general, we can consider a n-th Markov model (or a (n + 1)-gram model):

P(Xp41] Xy, Xa) = P(Xp3a | Xy Xoo1y 5 Xionr1)
This is n-th order Markov assumption, X, Xy 1,---, X;_ 1 is the previous n observations.
Learning higher order Markov chains is similar, but more expensive.

PXippi =z Xe =24, Xi=21) = P(Xpmi =xen1| Xe =2, Xp 1 = @1, -+, Xeonp1 = Toont1)

 PXpn =, Xe =2, Xea =21, Xenn = Tepga)
P(Xt =z, Xt1 =Tt-1,, Xpony1 = :l:t—n+1)
count (Ti_pi1,- -+, Te—1,Tt, Tei1) in the data

count (y—ni1,- -, Ti—1,%¢) in the data

N-gram language models: example

Suppose we are learning a 4-gram Language Model.

as-tire-proctor-started-the-etoeltire students opened their
discard b Y o
condition on this

count(students opened their w)
count(students opened their)

P(wlstudents opened their) =

For example, suppose that in the corpus:
e “students opened their” occurred 1000 times
e “students opened their books” occurred 400 times

- > P(books | students Opened theil') =04 Should we have discarded
¢ “students opened their exams” occurred 100 times the “proctor” context?

¢ > P(exams | students opened their) = 0.1
You can build a simple trigram Language Model over a 1.7 million word corpus (Reuters) in a few seconds on your laptop.

You can build a simple trigram Language Model over a
1.7 million word corpus (Reuters) in a few seconds on your laptop

Business and financial news

today the

get probability
distribution

company [0.153 | . - o T
bank 0.153 [Notice that there isn’t that much granularity in the distribution,

price ©.977 because “today the” doesn’t appear too often in corpus.
italian ©.039 Most two-grams won’t appear too often.
emirate 0.039

Generating text with a n-gram Language Model

You can also use a language model to generate text

today the
—
condition N
get probability
on th|s distribution

company ©.153

price 0.077
italian ©.039
emirate 0.039

kample

today the price

Condltlon get probability
on th is distribution

|of 0.308 sample
for 0.050
it 0.046
to 0.046
is 0.031

today the price of
——

Condltlon get probability
on this distribution

the 0.072
18 0.043
oil 0.043
its 0.036
gold 0.018 sample

today the price of gold per ton, while production of shoe
lasts and shoe industry, the bank intervened just after it
considered and rejected an imf demand to rebuild depleted
european stocks , sept 30 end primary 76 cts a share .

Surprisingly grammatical!

...but incoherent. We need to consider more than
three words at a time if we want to model language well.

However, larger n increases model size and requires too much data to learn

Recurrent Neural Networks
The problem with fixed-window

Recall the language modeling task:

e Input: sequence of words :1;(1), SR z®) (changing notation, zz(!) is overloaded to refer to both random value and its value)
e Output: prob list of the next word P(z*1|z®), cdots, (1)) .

How about a window-based neural model?

oy——tire——proctor—storted—tie—cfock {he students opened theig

discard

Y
fixed window

Use a fixed window of previous words, and train a vanilla fully-connected neural network to predict the next word? (This is a standard
supervised learning task)

Neural networks take vectors as inputs, how to give a word as input?

Approach 1: one-hot (sparse) encoding

Suppose vocabulary is of size s

'the’ = [1,0,---,0] — s dim vectors
'students’ = [0,1,---,0] — s dim vectors

It's high dimensioned, and each presentation is orthogonal, even similar words have representation which are far away.
Approach 2: word embeddings / word vectors

Word embeddings / vectors

A word embedding is a (dense) mapping from words, to vector representations of the words.

Ideally, this mapping has the property that words similar in meaning have representations which are close to each other in the vector
space.

You’ll see a simple way to construct these in HW4.

0.286

0.792 keep

-0.177 make get

-0.107

expect = 0.109
-0.542

0.349

0.271

0.487

remain

o dim. Lmbd&ir? M:ub? waky e

Slide adapted from CS224n by Chris Manning (Lecture 1) W“*""“S have
Nearby words are similar meanings / appear in similar contacts.
A fixed-window neural language model

Same architecture as neural networks in HW3.

Output distribution: § = softmaz(Uh + by) € RV,

Hidden layer: h = f(We + b1), fis non-linearity (like ReLU).

Concatenated word embeddings: € = [e(l), 6(2), 6(3), 6(4)] , supposed each is 10 dimensional.
Words / one-hot vectors: m(l), :13(2), :c(3), z@

books
laptops

gm0 1 O puibe

(e00000000000]|

w

(0000 0000 0000 0000]

1A -Unf\(/r\':hp(

the students opened their
M (2 3 @

Problem with this architecture:

e Uses a fixed window, which can be too small.

e Enlarging this window will enlarge the size of the weight matrix W' .
e Theinputs (V) and 2 are multiplied by completely different weights in TV .

No symmetry in how inputs are processed!
As with CNNs for images before, we need an architecture which has similar symmetries as the data.
In this case, can we have an architecture that can process any input length?

RNN

Core idea: apply the same weight W repeatedly. (Similar to what we did with filters in CNNs)

outputs {

;L) ;(2) i(3) ;(4)
(optional) Y i v Y

hidden states

input sequence
(any length) { x) x(? x®) z@
g4 = P(z®)|the students opened their)
anguage Model books
laptops

=
<
]8
Bl
)
<
&

&) o) e® &)

—(e000)-(e000
—[e000)(e0es
—(ev00)(e000)
—[e000)(e0ee

the students opened their
e (2 z®) @ slide ad.

Note: this input sequence could be much longer now.
e Output distribution: 9} = softmaz(UL® + by) € RV,

e Hidden states

h = o(WyhtD + W,e® 4 b))

o is activation functions (ReLU).
h(©) is the initial hidden state. b is the bias.

e Word embeddings: e® for word z®) .

Training an RNN language model
Get a big corpus of text which is a sequence of words m(l), s ,m(T)
Feed into RNN-LM; compute output distribution g(t> for every step t.

i.e. predict probability dist of every word, given words so far

Loss function on step t is cross-entropy between predicted probability distribution g}(), and the true next word y) (one-hot for
(t+1)y .
T):

JO0) = CE@",5") = = 3"y 1ogil) = —log gty

weV
This is same as multi-class classification

Average this to get overall loss for entire training set:

T T
720790 = 5> gk,

= t=1
heed thue Mb‘(D:tl
Training an RNN Language Model £ vopl ohof
Teacher forcing”
T
Loss — JM@) + JAWB) + JO@O) + JDE) +.. = B Z (o)
Predicted IU L) L) I,,)
prob dists L/ N . N
iU U U IU
B A h® h® 3¢

How to train this?
We Backprop + SGD

}—g—{oooo

e@

[

(o]

(o]

(o]
embedding

Corpus ——> the students opened thei
20 22 3 20

—{oooo}g{oooo
—{oooo]g{oooo

Slide adapted from
CS224n by Chris
Manning (Lecture 5)

exams

>
=0
3

Just like a n-gram Language Model, you can use a RNN Language Model to generate text by repeated sampling. Sampled output
becomes next step’s input.

favorite season is spring
Tsample sample sample sample
3]“) g y("f) y()
U U U U
h) h® h®) R

W W, Wi

(1) e®) e

embedding

(0000)(s00e
—>[....]§>[....
—(e900) (s00e
—[e000)(s00e

my favorite season is spring

Summary

More recent models improve drastically on RNNs. A particularly important model: The Transformer.

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones* Aidan N. Gomez* * Lukasz Kaiser*
Google Research University of Toronto Google Brain
1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin* *
illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.0 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature.

Why should we care about Language Modeling?

e language Modeling is a benchmark task that helps us measure our progress on understanding language

e language Modeling is a subcomponent of many NLP tasks, especially those involving generating text or estimating the probability
of text:

Predictive typing

Speech recognition
Handwriting recognition
Spelling/grammar correction
Authorship identification
Machine translation
Summarization

Dialogue

etc.

e Language Modeling has been extended to cover everything else in NLP:

	Lecture 7
	Convolutional Neural Networks (Convent / CNN)
	Intro
	Challenge
	2-D Convolution
	3-D Convolution
	Convolution Layer
	Connection to fully-connected network
	Pooling Layer
	A breakthrough result

	Sequence Prediction and Markov Models
	Sequential prediction & Language modeling
	n-gram language model
	Markov model
	Learning Markov models: MLE
	Learning Markov models: Another perspective
	Higher-order Markov models
	Generating text with a n-gram Language Model

	Recurrent Neural Networks
	The problem with fixed-window
	Word embeddings / vectors
	A fixed-window neural language model
	RNN
	Training an RNN language model
	Summary

