
Lecture 7

Lecture 7
Convolutional Neural Networks (Convent / CNN)

Intro
Challenge
2-D Convolution
3-D Convolution
Convolution Layer
Connection to fully-connected network
Pooling Layer
A breakthrough result

Sequence Prediction and Markov Models
Sequential prediction & Language modeling
n-gram language model
Markov model
Learning Markov models: MLE
Learning Markov models: Another perspective
Higher-order Markov models
Generating text with a n-gram Language Model

Recurrent Neural Networks
The problem with fixed-window
Word embeddings / vectors
A fixed-window neural language model
RNN
Training an RNN language model
Summary

Convolutional Neural Networks (Convent / CNN)

Intro

Image classification: a core task in computer vision

The problem: semantic gap

Challenges: viewpoint variation, illumination, deformation, occlusion, background clutter, intraclass variation.

Unlike sorting a list of numbers, no obvious way to hard-code the algorithm for recognizing a cat, or other classes.

Attempts:

Data-Driven Approach

Collect a dataset of images and labels
Use machine learning to train a classifier
Evaluate the classifier on new images

Challenge

How do we train a model that can do well despite all these variations?

The ingredients:

A lot of data (so that these variations are observed).
Huge models with the capacity to consume and learn from all this data (and the computational infrastructure to enable training)

What helps: Models with the right properties which makes the process easier (goes back to our discussion of choosing the function
class).

The problem with standard NN for image inputs

 image ->

Completely loses out on spatial structure.

Solution: Convolutional Neural Net (ConvNet/CNN)

A special case of fully connected neural nets.

Usually consist of convolution layers, ReLU layers, pooling layers, and regular fully connected layers.

Key idea: learning from low-level to high-level features.

2-D Convolution

 operation is convolution

3-D Convolution

The input is

Add up the result for the two channels

Convolution Layer

Calculation:

In practice: Common to zero pad the border.

Input: a volume of size

Hyperparameters:

 filters of size
Stride
Amount of zero padding (For one side)

Output: a volume of size where

#parameters: weights

Common setting:

Exp: https://poloclub.github.io/cnn-explainer/

Connection to fully-connected network

A convolutional layer is a special case of a fully connected layer:

Filter = weights with sparse connection and parameter sharing.

Local Receptive Field Leads to Sparse Connectivity (affects less),

Sparse connectivity: being affected by less

https://poloclub.github.io/cnn-explainer/

Parameter sharing

Much fewer parameters: (Ex ignoring bias terms)

Pooling Layer

Makes the representations smaller and more manageable

Operates over each activation map independently.

Similar to a filter, except

depth is always
different operations: average, L2-norm, max
no parameters to be learned

Max pooling with filter and stride is very common.

Shrink the feature map.

Input: a volume of size

Hyperparameters:

filters of size

Stride

Output: a volume of size where

#parameters: .

Common choices: , is large. (# parameters here is really large)

How do we learn the filters/weights?

Essentially the same as fully connected NNs: apply SGD/backpropagation

A breakthrough result

AlexNet

Sequence Prediction and Markov Models

Sequential prediction & Language modeling

Given observations (input), what is (output).

Examples:

text or speech data
stock market data
weather data

In this lecture, we will mostly focus on text data (language modelling).

Language modelling is the task of predicting what word comes next:

More formally, let (r.v. over the randomness in the sentence, context, etc.) be the random variable for the -th word in the
sentence, and let be the value taken by the random variable. Then the goal is to compute

A system that does this is known as language model.

We can also think of a Language Model as a system that assigns a probability to a piece of text.

For example, if we have some text , then the probability of this text (according to the Language Model) is:

You use Language Models every day!

n-gram language model

n-gram language model is a type of Markov model.

the students opened their ___

Question: How to learn a Language Model?

Answer (pre- Deep Learning): learn an n-gram Language Model

Definition: An n-gram is a chunk of n consecutive words.

unigrams: “the”, “students”, “opened”, ”their”

bigrams: “the students”, “students opened”, “opened their”

trigrams: “the students opened”, “students opened their”

four-grams: “the students opened their”

Idea: Collect statistics about how frequent different n-grams are and use these to predict next word.

Markov model

A Markov model or Markov chain is a sequence of random variables with the Markov property: a sequence of random variables
 s.t.

i.e. the current state only depends on the most recent state (notation denotes the sequence). This is a bigram(2-
gram) model!

We will consider the following setting:

All 'S take value from the same discrete set . is the size of the dictionary of all possible words.
 , known as transition probability.

 . is the initial probability.
 are parameters of the model. (is the matrix where the entry corresponding to is).

Learning Markov models: MLE

Now suppose we have observed sequences of examples:

where

for simplicity we assume each sequence has the same length .
lower case represents the value of the random variable .

From these observations how do we learn the model parameters ?

Same story, find the MLE. The log-likelihood of a sequence is

This is just over one sequence, we apply it to sum all sequences.

So MLE is

If is large for some , then should be large for that .

This is an optimization problem, and can be solved by hand (though we’ll skip in class).

The solution is:

Learning Markov models: Another perspective

Let’s first look at the transition probabilities. By the Markov assumption,

Using the definition of conditional probability

We can estimate this using data

We don't use the last state, since it won't transfer to any state

The initial state distribution follows similarly

This is just like estimating bias of a coin / dice.

Exp:

Sunny occurs , rainy occurs (We don't use the last state, since it won't transfer to any state).

For example:

Higher-order Markov models

Is the Markov assumption reasonable? Not so in many cases, such as for language modeling.

Higher order Markov chains make it a bit more reasonable, e.g. the second-order Markov assumption

i.e. the current word only depends on the last two words. This is a trigram model, since we need statistics of three words at a time to
learn. In general, we can consider a -th Markov model (or a -gram model):

This is -th order Markov assumption, is the previous observations.

Learning higher order Markov chains is similar, but more expensive.

N-gram language models: example

You can build a simple trigram Language Model over a 1.7 million word corpus (Reuters) in a few seconds on your laptop.

Generating text with a n-gram Language Model

You can also use a language model to generate text

Recurrent Neural Networks

The problem with fixed-window

Recall the language modeling task:

Input: sequence of words . (changing notation, is overloaded to refer to both random value and its value)
Output: prob list of the next word .

How about a window-based neural model?

Use a fixed window of previous words, and train a vanilla fully-connected neural network to predict the next word? (This is a standard
supervised learning task)

Neural networks take vectors as inputs, how to give a word as input?

Approach 1: one-hot (sparse) encoding

Suppose vocabulary is of size

It's high dimensioned, and each presentation is orthogonal, even similar words have representation which are far away.

Approach 2: word embeddings / word vectors

Word embeddings / vectors

A word embedding is a (dense) mapping from words, to vector representations of the words.

Ideally, this mapping has the property that words similar in meaning have representations which are close to each other in the vector
space.

Nearby words are similar meanings / appear in similar contacts.

A fixed-window neural language model

Same architecture as neural networks in HW3.

Output distribution: .
Hidden layer: , is non-linearity (like ReLU).
Concatenated word embeddings: , supposed each is dimensional.
Words / one-hot vectors: .

Problem with this architecture:

Uses a fixed window, which can be too small.

Enlarging this window will enlarge the size of the weight matrix .

The inputs and are multiplied by completely different weights in .

No symmetry in how inputs are processed!

As with CNNs for images before, we need an architecture which has similar symmetries as the data.

In this case, can we have an architecture that can process any input length?

RNN

Core idea: apply the same weight repeatedly. (Similar to what we did with filters in CNNs)

Note: this input sequence could be much longer now.

Output distribution: .

Hidden states

 is activation functions (ReLU).

 is the initial hidden state. is the bias.

Word embeddings: for word .

Training an RNN language model

Get a big corpus of text which is a sequence of words

Feed into RNN-LM; compute output distribution for every step .

 i.e. predict probability dist of every word, given words so far

Loss function on step is cross-entropy between predicted probability distribution , and the true next word (one-hot for
) :

This is same as multi-class classification

Average this to get overall loss for entire training set:

Just like a n-gram Language Model, you can use a RNN Language Model to generate text by repeated sampling. Sampled output
becomes next step’s input.

Summary

More recent models improve drastically on RNNs. A particularly important model: The Transformer.

Why should we care about Language Modeling?

Language Modeling is a benchmark task that helps us measure our progress on understanding language

Language Modeling is a subcomponent of many NLP tasks, especially those involving generating text or estimating the probability
of text:

Predictive typing

Speech recognition

Handwriting recognition

Spelling/grammar correction

Authorship identification

Machine translation

Summarization

Dialogue

etc.

Language Modeling has been extended to cover everything else in NLP:

	Lecture 7
	Convolutional Neural Networks (Convent / CNN)
	Intro
	Challenge
	2-D Convolution
	3-D Convolution
	Convolution Layer
	Connection to fully-connected network
	Pooling Layer
	A breakthrough result

	Sequence Prediction and Markov Models
	Sequential prediction & Language modeling
	n-gram language model
	Markov model
	Learning Markov models: MLE
	Learning Markov models: Another perspective
	Higher-order Markov models
	Generating text with a n-gram Language Model

	Recurrent Neural Networks
	The problem with fixed-window
	Word embeddings / vectors
	A fixed-window neural language model
	RNN
	Training an RNN language model
	Summary

